Хм биохимия

Хиломикроны – биохимия и роль в обмене жиров

Хм биохимия

Хиломикроны представляют собой частички, размер которых в диаметре составляет менее 1 мкм. Они относятся к группе липидов, обладают специальной оболочкой из аполипопротеина и имеют в своем составе триглицериды, холестерин и фосфолипиды.

Функция

Причиной снижения хиломикронов может быть абеталипопротеинемия

Деятельность хиломикронов заключается в том, чтобы транспортировать экзогенный жир из кишечника непосредственно в ткани. Производство липидов в энтероцитах из элементов вида мицелл называют жировым ресинтезом.

Чтобы функционирование хиломикронов было полноценным, в крови должна содержаться их нормальная концентрация. Если у человека наблюдается высокий уровень этого вещества в организме, причинами могут быть следующие:

  1. Гиперлипопротеинемия. Сюда входит несколько патологий генетического характера, которые встречаются в медицинской практике крайне редко.
  2. Семейная гиперхиломикронемия. Заболевание представляет собой недостаток липопротеинлипазы. Оно нередко вызывает внезапное увеличение количества хиломикронов.
  3. Наличие ингибитора липопротеинлипазы в организме с рождения.
  4. Недостаток аполипопротеина СII. При нем в крови отсутствует белок, функция которого заключается в активизации фермента, ответственного за транспортировку липидов в ткани.
  5. Гиперлипопротеинемия V типа. Суть патологии состоит в повышенном содержании липопротеинов низкой плотности при слабой деятельности липопротеинлипазы.

Если обнаруживается низкий показатель, можно заподозрить заболевание Андерса. Отличается возникновением гипобеталипопротеинемией и чрезмерным скоплением аполипопротеин В-подобного белка в кишечнике. Также причиной снижения хиломикронов может быть абеталипопротеинемия, которая характеризуется сбоем в выработке аполипопротеина В-48, что ведет к невозможности производства липопротеинов.

Особенности метаболизма

Образование хиломикронов осуществляется в кишечнике, а именно в стенках тонкой кишки, когда происходит активное всасывание липидов. Вещества проникают в лимфатические сосуды в виде мелких капель. Оттуда они поступают непосредственно в кровь. Сначала в сосуды легких, затем в большой круг кровообращения.

Спустя некоторый период времени под влиянием липопротеинлипазы содержание триглицеридов в составе хиломикронов сильно снижается. Тогда оставшиеся частички выводятся из крови с помощью печени.

Особенности биохимии обменного процесса

Количество хиломикронов способно оказывать воздействие скорость выведения вещества из организма

В нормальном состоянии функциональность остаточных хиломикронов заключается в том, чтобы вернуть липиды в печень. Осуществляется это путем печеночно-кишечной рециркуляции. Жир, имеющийся в составе остаточного липопротеина, выполняет разные функции в печени.

После разложения холестерина специальными ферментами он имеет возможность свободно проникать в печеночные клетки. Триглицериды, имеющиеся в строении хиломикронов, имеют огромное количество жирных кислот.

Производство аполипопротеина B в тканях тонкой кишки играет большую роль для создания липопротеиновых частиц, а созревшая форма протеина apoB48 включается в липоидную структуру. ApoB48 осуществляется важные функции в обменном процессе. Количество хиломикронов способно оказывать воздействие скорость выведения вещества из организма.

Липопротеины и образование хиломикронов

При прохождении хиломикронами через капилляры тканей на их триглицериды оказывает влияние липопротеинлипаза. Было установлено несколько ее полиморфизмов. Среди них есть те, которые связаны со сбоем в количестве жиров в крови и патологиями коронарной артерии.

Даже если в организме присутствует сильно выраженная гипертриглицеридемия и полностью прекратилась активность липопротеинлипазы, метаболизм хиломикронов не ухудшается.

В процессе выведения липопротенинов из организма большую роль играет такое вещество как лиганд apoE. Он представляет собой рецептор липопротеина низкой плотности. Холестерин принимает участие в обеспечении нормального процесса выхода хиломикронов. Без него распад триглицеридов не останавливается, но остатки могут так и остаться в крови.

Биохимический анализ крови и липопротеины

Концентрацию хиломикронов в крови сложно измерить

Связь биохимии крови и состава липопротеинов еще не изучена до конца, поэтому требуется еще много исследований. Хиломикроны относятся к частицам, которые исследованы еще довольно плохо. Это объясняется тем, что их концентрацию в крови сложно измерить.

Биохимический анализ крови может свидетельствовать о том, что нарушения в выведении остаточных липопротеинов заключается в развитии наиболее обширного сбоя метаболизма липопротеинов. Имеется также свидетельство, указывающее на связь нарушений процесса выведения и возникновением атеросклероза сосудов.

Источник: https://holesterin.guru/obshhaya-informatsiya/rol-i-obrazovanie-hilomikronov/

Хиломикроны

Хм биохимия

Липопротеины – комплекс жиров, то есть липидов. Представляют собой сложные соединения, образование которых происходит на основе белков и жиров, попавших в наш организм. Самыми плотными липопротеинами являются хиломикроны. Их роль сложно переоценить, ведь они составляют около 90% всех липопротеинов. По их количеству в крови можно сделать вывод о наличии ряда заболеваний.

Определение, строение и биохимический состав

Хиломикроны – микрочастицы, которые состоят из белка и жиров, в диаметре они достигают не более 0,1–1 микрона. Несмотря на такой миниатюрный размер, из всех липопротеинов они являются самыми большими. Плотность этих микрочастиц очень низкая.

Кроме хиломикронов, существуют другие виды липопротеинов:

  • ЛПВЛ – обладают самой высокой плотностью;
  • ЛПП – промежуточная плотность;
  • ЛПНП – низкая плотность;
  • ЛПОНП – очень низкая плотность.

Плотность хиломикронов составляет до 0,95–1 г/мл – самый низкий показатель. Также особенность этих частиц по сравнению с другими липопротеинами заключается в том, что в них содержится минимальное количество белка. В их состав входят такие компоненты:

  • липиды (около 98% всего состава) – холестерол, фосфолипиды, триглицериды;
  • белки – аполипопротеины А, В и С.

Строение хиломикронов, учитывая их миниатюрный размер, довольно сложное

Причины повышения и понижения

Причины превышения нормы хиломикронов в организме по-прежнему изучаются. Самой распространенной причиной повышения считается гиперлипопротеинемия – врожденная патология, передающая по наследственности. К счастью, встречается редко. Гиперлипопротеинемия проявляется в следующем:

  • недостаток липопротеинлипазы, приводящий к резкому увеличению липопротеинов низкой плотности;
  • наличие ингибитора липопротеинлипазы;
  • отсутствие белка, без которого липопротеины не могут полноценно выполнять свою функцию.

Уменьшение количества хиломикронов обычно связано с гипобеталипопротеинемией. Это заболевание, при котором в кишечнике, где вырабатываются эти микрочастицы, содержится чрезмерное количество аполипопротеина В-подобного белка.

Несмотря на то что характеристика и функциональность хиломикронов до конца не изучены из-за сложностей с исследованиями крови, медики все чаще говорят об этих микрочастицах. Уже доказана связь с нарушением в их обмене и атеросклерозом – причиной инфарктов, инсультов. В скором времени можно ждать новые методы исследования крови на содержание них микрочастиц.

Источник: https://bezholesterina.com/obshee/hilomikrony

Хиломикроны и ЛПОНП переносят триацилглицеролы

Хм биохимия

Транспорт триацилглицеролов от кишечника к тканям (экзогенные ТАГ) осуществляется в виде хиломикронов (ХМ), от печени к тканям (эндогенные ТАГ) – в виде липопротеинов очень низкой плотности.

В транспорте ТАГ к тканям можно перечислить последовательность следующих событий:

  1. Образование незрелых первичных ХМ в кишечнике.
  2. Движение первичных ХМ через лимфатические протоки в кровь.
  3. Созревание ХМ в плазме крови – получение белков апоС-II и апоЕ от ЛПВП.
  4. Взаимодействие ХМ с липопротеинлипазой (ЛПЛ) эндотелия кровеносных сосудов, которая отщепляет жирные кислоты от ТАГ. Далее жирные кислоты проникают непосредственно в клетки данной ткани или, связываясь с альбумином, разносятся по организму. В результате количество ТАГ в хиломикроне резко снижается, образуются остаточные ХМ.
  5. Переход остаточных ХМ в гепатоциты и полный распад их структуры.
  6. Синтез ТАГ в печени из пищевой глюкозы. Использование липидов, пришедших в составе остаточных ХМ.
  7. Образование первичных ЛПОНП в печени.
  8. Созревание ЛПОНП в плазме крови – получение белков апоС-II и апоЕ от ЛПВП.
  9. Взаимодействие с липопротеинлипазой эндотелия и потеря большей части ТАГ. Образование остаточных ЛПОНП (по-другому липопротеины промежуточной плотности, ЛППП).
  10. Далее остаточные ЛПОНП 
  • переходят в гепатоциты и полностью распадаются,
  • либо остаются в плазме крови и превращаются в ЛПНП.

Общая характеристика

  • формируются в кишечнике из ресинтезированных жиров,
  • яявляются самыми крупными липопротеинами, их размер от 100 до 1200 нм (0,1-1,2 мкм),
  • в их составе преобладают ТАГ, мало белка, фосфолипидов и холестерола (2% белка, 87% ТАГ, 2% ХС, 5% эфиров ХС, 4% фосфолипидов),
  • основным апобелком является апоВ-48, это структурный липопротеин, в плазме крови получают от ЛПВП белки апоС-II и апоЕ,
  • в норме натощак не обнаруживаются, в крови появляются после приема пищи, поступая из лимфы через грудной лимфатический проток, и полностью исчезают через 10-12 часов,
  • не атерогенны.

Метаболизм

1. После ресинтеза жиров в эпителиоцитах кишечника формируются первичные хиломикроны, имеющие только апоВ-48.

2. Из-за большого размера они не проникают напрямую в кровеносное русло и эвакуируются через лимфатическую систему, попадая в кровь через грудной лимфатический проток.

3. В крови хиломикроны взаимодействуют с ЛПВП и приобретают от них апоС-II и апоЕ, образуя зрелые формы. Белок апоС-II является активатором фермента липопротеинлипазы, белок апоЕ понадобится для удаления из крови остаточных хиломикронов.

4. На эндотелии капилляров вышеперечисленных тканей находится фермент липопротеинлипаза (ЛПЛ), отщепляющая жирные кислоты от ТАГ в положении 1 и 3, в результате накапливаются моно- и диацилглицеролы. 

5. Находясь в плазме крови, хиломикроны также взаимодействуют с ЛПВП, отдавая им часть своих МАГ и ДАГ и получая взамен эфиры ХС.

6. После взаимодействия хиломикрона с липопротеинлипазой полученные свободные жирные кислоты проникают в клетки органа, либо остаются в плазме крови и в комплексе с альбумином разносятся с кровью в другие ткани. Липопротеинлипаза способна удалить до 90% всех ТАГ, находящихся в хиломикроне.

7. Остаточные (ремнантные) хиломикроны, сохранившие в своем составе МАГ и ДАГ, попадают в гепатоциты посредством апоЕ-рецепторного эндоцитоза и разрушаются до составных частей.

8. Часть фосфолипидной оболочки ремнантных хиломикронов, содержащая апоС-II и апоЕ, способна “отрываться” от основной частицы и формировать первичные ЛПВП.

Что такое хиломикроны?

Хм биохимия

Для полноценного течения физиологических процессов человеческий организм ежедневно нуждается в поступлении определённого количества питательных веществ.

Одной из его базисных потребностей являются жиры, поступающие вместе с продуктами питания. Для выполнения своей биологической роли, молекулы липидов из пищеварительного тракта должны попасть в кровоток.

Функцию транспортировки экзогенных жиров взяли на себя хиломикроны.

Что такое хиломикроны

Хиломикроны – это молекулы липопротеинов, заключенные в капсулу из аполипопротеина. Не смотря на то, что хиломикроны являются довольно крупными частицами, их можно увидеть только лишь под микроскопом.

Синтез этих микрочастиц происходит клетками слизистой оболочки кишечника из жиров, которые подверглись процессу ресинтеза.

Их состав представлен триацилглицеролом, фосфолипидами и холестеролом, небольшим количеством белка.

При отсутствии патологии, частицы хиломикронов не определяются натощак. Появление их в сыворотке крови отмечается только после еды.  Липопротеины поступают через лимфатическую систему, чтобы выполнить своё непосредственное назначение.

Остаточные хиломикроны  — это те частицы, которые полностью выполнили свою функцию. Они захватываются клетками печени и подвергаются процессу переработки. Примерно через 12 часов от них не остаётся и следа. При заболеваниях печени процесс утилизации может затягиваться до суток.

 Учёные доказали, что данные частицы не обладают атерогенностью.

Строение и функции хиломикронов

В составе ХМ преобладают липиды, на долю которых приходится около 98%. Они представлены триглицеридами и холестериновыми эфирами, фосфолипидами. Процентное содержание белка  хиломикронов не превышает 2%. Все молекулы белка содержит только оболочка, где они представлены такими классами:

  • аполипопротеин типа «А» — 11,8%;
  • аполипопротеин типа «Б» — 22,4 %;
  • аполипопротеин типа «С» — 65,8 %.

Основная функция ХМ –это транспортировка триацилглицеролов, эфиров ХС и жирных кислот из кишечника к тканям организма, которым первостепенно нужны эти субстраты.

Особенно необходимы липиды сердечной и другим поперечно-полосатым мышцам, молочным железам, осуществляющим лактацию, почкам, лёгким, костному мозгу. Эндотелиальная выстилка мелких сосудов, обеспечивающих кровоснабжение этих органов, имеет фермент липопротеинлипазу.

Также богаты липопротеинлипазой адипоциты – клетки жировой ткани. В ней регуляция синтеза фермента осуществляется выбросом в кровь инсулина, а также некоторых гормонов коры надпочечников.

Биохимия хиломикронов

Образование хиломикронов происходит в кишечнике из метаболизирующихся жиров, поступивших туда вместе с пищевыми продуктами. Это, так называемые, ХМ первичного звена, оболочка которых представлена только аполипопротеином класса «Б».

Из кишечника частицы по лимфатическим сосудам мигрируют к лимфатической системе и только оттуда проникают в общий кровоток. Первичные ХМ начинают циркулировать в плазме крови и в комплексе с ЛПВП и ЛПНП получают дополнительно аполипопротеины класса «А» и «С».

Присоединение этих белков обусловливает переход первичных ХМ к зрелым ХМ.

Аполипопротеин класса «С» способствует активации фермента липопротеинлипазы, аполипопротеин класса «А» отвечает за утилизацию печенью остаточных форм хиломикронов. Липопротеинлипаза при взаимодействии с ХМ отсоединяет от них жирные кислоты.

На их место становятся жирные спирты, представленные моноацилглицеролами и диацилглицеролами. Циркулирующие в крови ЛПВП «отбирают» у хиломикролов молекулы жирных спиртов, отдавая им эфиры холестрола.

По такому же принципу из ЛПОНП образуются липопротеины промежуточной плотности ЛППП.

Далее молекулы жирных кислот, которые отщепила от зрелого ХМ липопротеинлипаза, остаются циркулировать в кровотоке, откуда с помощью плазменных белков попадают к пунктам назначения. Остаточные молекулы хиломикронов захватываются из крови клетками печени, где происходит их полный распад.

Анализ крови на хиломикроны

Чтобы исследовать липидный обмен в организме, необходимо прибегнуть к биохимическому анализу крови. Исследуемым материалом для определения уровня ХМ является сыворотка крови.

Особенностью анализа является то, что забор биоматериала должен производиться не стандартно – на голодный желудок, а приблизительно через 12 часов после приёма пищи.

Это связано с особенностью образования и распада хиломикронов.

Взятую из вены кровь в специальной пробирке помещают на центрифугу, чтобы отделить плазму от форменных элементов. После центрифугирования форменные элементы под видом сгустка оседают на дно пробирки, а сыворотка остаётся на поверхности. На факт присутствия ХМ укажет муно-белесоватая плазма. Специалисты называют её хилёзной сывороткой.

Чтобы определить непосредственно наличие хиломикронов, проводится специальный тест. Он позволяет выявить нарушения обмена липидов. Пробирку с сывороткой помещают на 12 часов на холод. На протяжении этого времени частицы скапливаются у поверхности плазмы.

Расшифровка результатов проводится спустя 12 часов и основывается на изменении цвета содержимого пробирки, разделении его на слои. О повышении хиломикронов свидетельствует молочно-белая плёнка на поверхности исследуемого материала. Сама сыворотка остаётся прозрачной.

Источник: https://holestein.ru/analizy/chylomicrons

Липопротеины плазмы крови

Хм биохимия

Липопротеины – это высокомолекулярные водорастворимые частицы, представляющие собой комплекс белков и липидов. В этом комплексе белки вместе с полярными липидами формируют поверхностный гидрофильный слой, окружающий и защищающий внутреннюю гидрофобную липидную сферу от водной среды и обеспечивающий транспорт липидов в кровяном русле и их доставку в органы и ткани.

Плазменные липопротеины (ЛП) – это сложные комплексные соединения, имеющие характерное строение: внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (три-глицериды, эстерифицированный холестерин); жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин.

Толщина наружной оболочки липопротеиновой частицы (ЛП-частица) составляет 2,1–2,2 нм, что соответствует половине толщины ли-пидного бислоя клеточных мембран. Это позволило сделать заключение, что в плазменных липопротеинах наружная оболочка в отличие от клеточных мембран содержит липидный монослой.

Фосфолипиды, а также неэсте-рифицированный холестерин (НЭХС) расположены в наружной оболочке таким образом, что полярные группы фиксированы наружу, а гидрофобные жирно-кислотные «хвосты» – внутрь частицы, причем какая-то часть этих «хвостов» даже погружена в липидное ядро.

По всей вероятности, наружная оболочка липопротеинов представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка. Существует много различных схем строения ЛП-частицы. Предполагают, что входящие в ее состав белки занимают только часть наружной оболочки.

Допускается, что часть белковой молекулы погружена в ЛП-частицу глубже, чем толщина ее наружной оболочки (рис. 17.4). Итак, плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых химические связи между компонентами комплекса носят нековалентный характер. Поэтому применительно к ним вместо слова «молекула» употребляют выражение «частица».

Классификация липопротеинов. Существует несколько классификаций ЛП, основанных на различиях в их свойствах: гидратированной плотности, скорости флотации, электрофоретической подвижности, а также на различиях в апопротеиновом составе частиц.

Наибольшее распространение получила классификация, основанная на поведении отдельных ЛП в гравитационном поле в процессе ультрацентрифугирования. Применяя набор солевых плотностей, можно изолировать отдельные фракции ЛП: хиломикроны (ХМ) – самые легкие частицы, затем липопротеины очень низкой плотности (ЛПОНП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).

Различная электрофоретическая подвижность по отношению к глобулинам плазмы крови положена в основу другой классификации ЛП, согласно которой различают ХМ (остаются на старте подобно γ-глобулинам), β-ЛП, пре-β-ЛП и α-ЛП, занимающие положение β-, α1- и α2-глобулинов соответственно.

Электрофоретическая подвижность фракций ЛП, выделенных путем ультрацентрифугирования, соответствует подвижности отдельных глобулинов, поэтому иногда используют двойное их обозначение: ЛПОНП и пре-β-ЛП, ЛПНП и β-ЛП, ЛПВП и α-ЛП (рис. 17.5).

Следует помнить, что изолированные различными методами ЛП не являются полностью идентичными, поэтому рекомендуется использовать терминологию, соответствующую методу выделения.

Рис. 17.4. Строение ЛП-частицы (схема). Имеется сходство со структурой плазматической мембраны. Некоторое количество эстерифицированного холестерина и триглицеридов (не показано) содержится в поверхностном слое, а в ядре частицы -небольшое количество неэстерифицированного холестерина (по А.Н. Климову и Н.Г. Никульчевой). Объяснение в тексте.

Аполипопротеины (апобелки, апо) входят в состав липопротеинов. Это один белок либо несколько белков, или полипептидов, которые называют апобелками (сокращенно апо). Эти белки обозначают буквами латинского алфавита (А, В, С). Так, два главных апобелка ЛПВП обозначаются A-I и А-II.

Основным апобелком ЛПНП является апобелок В, он входит также в состав ЛПОНП и хиломикронов. Апобелки C-I, С-II и C-III представляют собой небольшие полипептиды, которые могут свободно переходить от одного липопротеина к другому. Помимо апобелков А, В и С, в липопро-теинах плазмы крови идентифицировано еще несколько апобелков.

Одним из них является выделенный из ЛПОНП апобелок Е, на его долю приходится 5–10% от общего количества апобелков ЛПОНП.

Рис. 17.5. Шлирен-профиль липопротеинов плазмы крови человека при аналитическом ультрацентрифугировании (по А.Н. Климову и Н.Г. Никульчевой, 1995).

Апобелки выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений.

Апобелки выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом.

Не меньшее значение имеет также регуляция апобелками активности ряда основных ферментов липидного обмена: лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицеридлипазы.

Структура и концентрация в плазме крови каждого апобелка находится под генетическим контролем, в то время как содержание липидов в большей степени подвержено влиянию диетических и других факторов.

Дислипопротеинемией (ДЛП) называют изменения в содержании липопротеинов в плазме (сыворотке) крови: повышение, снижение или практически полное отсутствие. Сюда же относят случаи появления в крови необычных или патологических ЛП. Таким образом, понятие «дислипопро-теинемия» охватывает все разновидности изменения уровня ЛП в крови.

Более узким является термин «гиперлипопротеинемия» (ГЛП), отражающий увеличение какого-то класса или классов ЛП в крови. Первой и весьма успешной попыткой систематизации отклонений от нормы в липопротеид-ном спектре крови явилась классификация типов ГЛП, разработанная D. Fredrickson и соавт. и одобренная экспертами ВОЗ.

Согласно варианту ВОЗ, различают следующие типы ГЛП.

Тип I – гиперхиломикронемия. Основные изменения в липопротеи-нограмме следующие: высокое содержание ХМ, нормальное или слегка повышенное содержание ЛПОНП; резко повышенный уровень триглицери-дов в сыворотке крови. Клинически это состояние проявляется ксантома-тозом.

Тип II делят на два подтипа: тип IIа – гипер-β-липопротеинемия с характерным высоким содержанием в крови ЛПНП и тип IIб – гипер-β-липо-протеинемия с высоким содержанием одновременно двух классов липопро-теинов (ЛПНП, ЛПОНП).

При типе II отмечается высокое, а в некоторых случаях очень высокое содержание холестерина в плазме крови. Уровень триглицеридов в крови может быть либо нормальным (типа IIа), либо повышенным (тип IIб).

Клинически проявляется атеросклеротическими нарушениями, нередко развивается ишемическая болезнь сердца (ИБС).

Тип III – дис-β-липопротеинемия. В сыворотке крови появляются липопротеины с необычно высоким содержанием холестерина и высокой электрофоретической подвижностью («флотирующие» β-липопротеины). Они накапливаются в крови вследствие нарушения превращения ЛПОНП в ЛПНП. Этот тип ГЛП часто сочетается с различными проявлениями атеросклероза, в том числе с ИБС и поражением сосудов ног.

Тип IV – гиперпре-β-липопротеинемия. Характерны повышение уровня ЛПОНП, нормальное содержание ЛПНП, отсутствие ХМ; увеличение уровня триглицеридов при нормальном или слегка повышенном уровне холестерина. Клинически этот тип сочетается с диабетом, ожирением, ИБС.

Тип V – гиперпре-β-липопротеинемия и гиперхиломикронемия. Наблюдаются повышение уровня ЛПОНП, наличие ХМ. Клинически проявляется ксантоматозом, иногда сочетается со скрытым диабетом. Ишемической болезни сердца при данном типе ГЛП не наблюдается.

Несомненным достоинством данной классификации является то, что она выделила связь нарушений обмена ЛП с развитием атеросклероза, благодаря чему не утратила своего значения и в настоящее время.

Однако эта классификация не охватывает все возможные варианты отклонений от нормы в содержании липидов и ЛП в плазме крови.

В частности, она не учитывает изменения концентрации ЛПВП, пониженное содержание которых является независимым фактором риска развития атеросклероза и ИБС, а повышенное, наоборот, выполняет роль антириск-фактора.

Исследования, проведенные во многих странах мира, показали, что у больных ИБС содержание α-липопротеинового холестерина ниже, чем у лиц без признаков ИБС.

Холестерин ЛПВП как «предсказатель» ИБС оказался в 8 раз чувствительнее, чем холестерин ЛПНП.

Предложено в качестве «предсказателя» рассчитывать так называемый холестериновый коэффициент атерогенности (К), представляющий собой отношение уровня холестерина ЛПНП и ЛПОНП холестерина ЛПВП:

В клинике очень удобно рассчитывать этот коэффициент на основании определения уровня общего холестерина и холестерина ЛПВП:

Чем выше этот коэффициент (у здоровых лиц он не превышает 3), тем выше опасность развития (и наличия) ИБС.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Источник: http://www.xumuk.ru/biologhim/247.html

ТерапевтОнлайн
Добавить комментарий